Солитоны в воздушной среде. Ударные волны. Уединенные волны. Свойства уравнения Кортевега - де Фриза

Рассмотрим среду без диссипации Пусть пока нелинейность в среде квадратична, т. е. тогда вместо (19.1) будем искать уравнение, полученное Кортевегом и де Вризом для волн на поверхности жидкости:

Решения этого уравнения сейчас изучены очень подробно, в том числе и нестационарные, но мы будем обсуждать только самые простые из них, дополнив обсуждение качественными соображениями. Прежде всего поразмышляем над тем, к чему может привести добавление к уравнению простой волны слагаемого, описывающего дисперсионное расплывание. Как мы уже знаем, дисперсионное расплывание может компенсировать процесс опрокидывания волны, и тогда ее профиль стабилизируется, т. е. возможно существование стационарных бегущих волн, профиль которых не меняется во времени. Такие волны определены во всем пространстве и бегут с постоянной скоростью V, т. е. все переменные в волне являются функцией бегущей координаты Для них т. е. стационарные волны уравнения (19.14) описываются уравнением в обыкновенных производных или после интегрирования,

Таким образом, стационарным волнам уравнения Кортевега-де Вриза соответствует уравнение консервативного нелинейного осциллятора. Постоянную будем считать равной нулю (это всегда можно сделать, введя полую переменную), тогда уравнение (19.15) представляется в виде где Потенциальная энергия стационарных волн и их фазовый портрет приведены на рис. 19.6.

Существуют различные классы решений уравнения Кортевега-де Вриза. Можно выделить два из них.

1. Квазисинусоидальные колебания с малыми амплитудами (фазовые траектории вблизи состояния центра); для них нелинейность почти не сказывается (рис. 19.7 а).

2. Движение вблизи сепаратрисы и по самой сепаратрисе. Именно эти сильно нелинейные волны и представляют для нас интерес. Периодические движения вблизи сепаратрисы (рис. 19.76) называются кноидальными волнами. Сепаратрисе соответствует локализованное в пространстве решение в виде одиночного возвышения или уединенной волны - солитона (рис. 19.7 в) с амплитудой Это решение аналитически записывается в виде

где - характерная ширина солитона. Справедливость решения легко проверить прямой подстановкой его в уравнение (19.15) при

Рис. 19.6. Потенциальная энергия и фазовый портрет стационарных волн. Состояние равновесия центр. Солитон соответствует сепаратрисе

Рис. 19.7. Различные классы решений уравнения Кортевега-де Вриза и их соответствие фазового портрету стационарных волн: а - квазисинусоидальные колебания малой амплитуды - вблизи состояния центра; - кноидальные волны (периодические солитонные решетки) - вблизи сепаратрисы; в - солитон (уединенная волна) - сепаратриса

Используя при подстановке тождество получаем

Отсюда можно найти . Тождество (19.16) выполняется при любых , следовательно, коэффициенты при одинаковых степенях должны быть равны, т. е.

Итак, мы получили: - чем выше солитон, тем он уже; - чем солитон шире, тем он медленнее бежит и тем меньше его амплитуда. Таким образом, ширина, скорость и амплитуда солитона, описываемого уравнением Кортевега-де Вриза, однозначно связаны, т. е. семейство решений в виде солитонов однопараметрическое - меняем, например, V, получаем разные солитоны.

Почему солитоны, т. е. частные виды стационарных волн, интересны? Фактически по тон же причине, что и другие стационарные волны:

нестационарные возмущения довольно широкого класса в процессе распространения асимптотически приближаются к солитону! Экспериментально этот факт был обнаружен давно; еще более ста лет назад Скотт-Рассел наблюдал солитон и поэтично описал его .

Новая жизнь солитона - одного из самых привлекательных объектов современной физики - в значительной степени связала с построением точных решении многих уравнений нелинейной теории волн. При их построении большую роль сыграл так называемый метод обратной задачи рассеяния . Этот метод берет начало от работы Гарднера, Грина, Крускала и Миуры , которые в 1967 г. установили связь между уравнениями Кортевега-де Вриза и Шредингера. Поясним кратко суть этой связи. Как известно , уравнение Шредингера в случае, когда потенциал положительно определен и спадает до пуля при имеет финитные решения, стремящиеся вместе со своими производными к нулю на бесконечности, а спектр собственных значений дискретен. Рассмотрим уравнение Шредингера

где зависит от времени как от параметра. Тогда и собственные значения, вообще говоря, будут зависеть от Покажем, что собственные значения не будут зависеть от если функция удовлетворяет уравнению Кортевега-де Вриза (точнее, если - любое положительно определенное решение уравнения Кортевега-де Вриза, спадающее на , то соответствующий ему спектр собственных значений остается неизменным). Из уравнения (19.17) находим

Подставим это выражение в уравнение (19.14). После вычислений получим

где штрихи означают соответствующие производные по х.

Проинтегрируем левую и правую части (19.18) по х от до При этом правая часть получившегося уравнения обратится в нуль,

поскольку собственные функции (вместе со своими производными) дискретного спектра уравнения Шредингера исчезают на бесконечности. Таким образом,

Поскольку в силу нормировки то Так как решение произвольно, спектр нам неизвестен. Покажем теперь, что если - солитон, то уравнение Шредингера имеет единственное собственное значение. Когда - солитон, уравнение (19.17) принимает вид

Здесь Дискретные собственные значения уравнения Шредингера даются формулой (см. , § 23, задача 4)

где причем должно быть Подставляя в выражение для выписанные выше значения и а, получим т. е. существует единственное собственное значение Итак, мы получили, что: а) спектр собственных значений не зависит от хотя изменяется со временем; б) каждому собственному значению соответствует солитон. Отсюда следует вывод: любое локализованное положительное возмущение представляет собой набор солитонов и, если достаточно долго подождать, эти солитоны сформируются и возмущение превратится в последовательность солитонов, выстроившихся по амплитуде (рис. 19.8 в). Поскольку «соли-тонный состав» - набор солитонов, из которых состоит возмущение - не зависит от времени, солитоны могут лишь меняться местами в пространстве. Число солитонов зависит от формы начального возмущения; вершины их лежат на одной прямой, так как расстояние, пройденное каждым солитоном, пропорционально его скорости, а последняя, как мы уже знаем, пропорциональна амплитуде.

Такой метод решения уравнения Кортевега-де Вриза называется методом обратной задачи рассеяния, поскольку мы решаем задачу на собственные значения для уравнения Шредингера с потенциалом где играет роль параметра. В квантовомеханическом Если падающая из бесконечности волна плоская с единичной амплитудой, то амплитуда отраженной волны называется коэффициентом отражения. Мы искали сам потенциал. Это и есть решение обратной задачи квантовой теории рассеяния: по известному При дисперсионные эффекты несущественны: основную роль играет нелинейность, приводящая к формированию коротких импульсов, и лишь потом сказывается дисперсия, уравновешивающая процесс (рис. 19.86). Именно так начальное возмущение большей амплитуды распадается на последовательность солитонов, вершины которых лежат на одной прямой (на рис. 19.8 в приведены результаты численных расчетов, взятые из работы ).

После расчетов и поиска аналогий эти ученые установили, что уравнение, которое использовали Ферми, Паста и Улам, при уменьшении расстояния между грузиками и при неограниченном росте их числа переходит в уравнение Кортевега-де Фриса. То есть по существу задача, предложенная Ферми, сводилась к численному решению уравнения Кор­тевега-де Фриса, предложенного в 1895 году для описания уединенной волны Рассела. Примерно в те же годы было показано, что для описания ионно-звуковых волн в плазме используется также уравне­ние Кортевега-де Фриса. Тогда стало ясно, что это уравнение встречается во многих областях физики и, следовательно, уединенная волна, которая опи­сывается этим уравнением, является широко рас­пространенным явлением.

Продолжая вычислительные эксперименты по моделированию распространения таких волн, Крус­кал и Забуски рассмотрели их столкновение. Оста­новимся подробнее на обсуждении этого замеча­тельного факта. Пусть имеются две уединенные волны, описываемые уравнением Кортевега-де Фриса, которые различаются амплитудами и дви­жутся друг за другом в одном направлении (рис. 2). Из формулы для уединенных волн (8) следует, что скорость движения таких волн тем выше, чем боль­ше их амплитуда, а ширина пика уменьшается с ростом амплитуды. Таким образом, высокие уеди­ненные волны движутся быстрее. Волна с большей амплитудой догонит движущуюся впереди волну с меньшей амплитудой. Далее в течение некоторого времени две волны будут двигаться вместе как еди­ное целое, взаимодействуя между собой, а затем они разъединятся. Замечательным свойством этих-волн является то, что после своего взаимодействия форма и

Рис. 2. Два солитона, описываемые уравнением Кортевега-де Фриса,

до взаимодействия (вверху) и после (внизу)

скорость этих волн восстанавливаются. Обе волны после столкновения лишь смещаются на не­которое расстояние по сравнению с тем, как если бы они двигались без взаимодействия.

Процесс, у которого после взаимодействия волн сохраняются форма и скорость, напоминает упру­гое столкновение двух частиц. Поэтому Крускал и Забуски такие уединенные волны назвали солитонами (от англ. solitary- уединенный). Это специ­альное название уединенных волн, созвучное элек­трону, протону и многим другим элементарным частицам, в настоящее время общепринято.

Уединенные волны, которые были открыты Рас­селом, и в самом деле ведут себя как частицы. Боль­шая волна не проходит через малую при их взаимо­действии. Когда уединенные волны соприкасаются, то большая волна замедляется и уменьшается, а волна, которая была малой, наоборот, ускоряется и подрастает. И когда малая волна дорастает до разме­ров большой, а большая уменьшается до размеров малой, солитоны разделяются и больший уходит вперед. Таким образом, солитоны ведут себя как уп­ругие теннисные мячи.

Дадим определение солитона . Солитоном на­зывается нелинейная уединенная волна, которая сохраняет свою форму и скорость при собственном движении и столкновении с себе подобными уеди­ненными волнами, то есть представляет собой ус­тойчивое образование. Единственным результатом взаимодействия солитонов может быть некоторый сдвиг фаз.

Открытия, связанные с уравнением Кортевега - де Фриса, не закончились открытием солитона. Следующим важным шагом, имеющим отношение к этому замечательному уравнению, было создание нового метода решения нелинейных уравнений в частных производных. Хорошо известно, что най­ти решения нелинейных уравнений очень сложно. До 60-х годов нашего столетия считалось, что такие уравнения могут иметь только некоторые частные решения, удовлетворяющие специально заданным начальным условиям. Однако уравнение Кортевега-де Фриса и в этом случае оказалось в исключи­тельном положении.

В 1967 году американские физики К.С. Гарднер, Дж.М. Грин, М. Крускал и Р. Миура показали, что решение уравнения Кортевега-де Фриса может быть в принципе получено для всех начальных усло­вий, которые определенным образом обращаются в нуль при стремлении координаты к бесконечности. Они использовали преобразование уравнения Кортевега - де Фриса к системе двух уравнений, называ­емой теперь парой Лакса (по имени американского математика Питера Лакса, внесшего большой вклад в развитие теории солитонов), и открыли новый ме­тод решения ряда очень важных нелинейных урав­нений в частных производных. Этот метод получил название метода обратной задачи рассеяния, по­скольку в нем существенно используется решение задачи квантовой механики о восстановлении по­тенциала по данным рассеяния.

2.2. Групповой солитон

Выше мы говорили, что на практике волны, как правило, распространяются группами. Подобные группы волн на воде люди наблюдали с незапамят­ных времен. На вопрос о том, почему для волн на воде так типичны "стаи" волн, удалось ответить Т. Бенжамену и Дж. Фейеру только в 1967 году. Тео­ретическими расчетами они показали, что простая периодическая волна на глубокой воде неустойчива (теперь это явление называется неустойчивостью Бенжамена-Фейера), и поэтому волны на воде из-за неустойчивости разбиваются на группы. Уравнение, с помощью которого описывается распространение групп волн на воде, было получено В.Е. Захаровым в 1968 году. К тому времени это уравнение уже было известно в физике и носило название нелинейного уравнения Шрёдингера. В 1971 году В.Е. Захаров и А.Б. Шабат показали, что это нелинейное уравне­ние имеет решения также в виде солитонов, более того, нелинейное уравнение Шрёдингера, так же как и уравнение Кортевега-де Фриса, может быть проинтегрировано методом обратной задачи рассея­ния. Солитоны нелинейного уравнения Шрёдинге­ра отличаются от обсуждаемых выше солитонов Кортевега-де Фриса тем, что они соответствуют форме огибающей группы волн. Внешне они на­поминают модулированные радиоволны. Эти солитоны называются групповыми солитонами, а иногда солитонами огибающей. Это название от­ражает сохраняемость при взаимодействии огиба­ющей волнового пакета (аналог штриховой ли­нии, представленной на рис. 3), хотя сами волны под огибающей двигаются со скоростью, отличной от групповой. При этом форма огибающей описывается


Рис. 3. Пример группового солитона (штриховая линия)

зависимостью

a(x,t)=a 0 ch -1 ()

где а а - амплитуда, а l - половина размера солитона. Обычно под огибающей солитона находится от 14 до 20 волн, причем средняя волна самая большая. С этим связан хорошо известный факт, что самая вы­сокая волна в группе на воде находится между седь­мой и десятой (девятый вал). Если в группе волн об­разовалось большее количество волн, то произойдет ее распад на несколько групп.

Нелинейное уравнение Шрёдингера, как и урав­нение Кортевега- де Фриса, также имеет широкую распространенность при описании волн в различ­ных областях физики. Это уравнение было предло­жено в 1926 году выдающимся австрийским физи­ком Э. Шрёдингером для анализа фундаментальных свойств квантовых систем и первоначально ис­пользовано при описании взаимодействия внут­риатомных частиц. Обобщенное или нелинейное уравнение Шрёдингера описывает совокупность явлений в физике волновых процессов. Например, оно используется для описания эффекта самофоку­сировки при воздействии мощного лазерного луча на нелинейную диэлектрическую среду и для опи­сания распространения нелинейных волн в плазме.


3. Постановка задачи

3.1. Описание модели.В настоящее время наблюдается значи­тельно возрастающий интерес к исследованию нелинейных волно­вых процессов в различных областях физики (например, в оптике, физике плазмы, радиофизике, гидродинамике и т.д.). Для изучения волн малой, но конечной амплитуды в дисперсионных средах в каче­стве модельного уравнения часто используют уравнение Кортевега-де Фриза (КдФ):

u t + ии х + b и ххх = 0 (3.1)

Уравнение КдФ было использовано для описания магнитозвуковых волн, распространяющихся строго поперек магнитного поля или под углами, близкими к

.

Основные предположения, которые делаются при выводе уравне­ния: 1) малая, но конечная амплитуда, 2) длина волны велика по сравнению с длиной дисперсии.

Компенсируя действие нелинейности, дисперсия дает возможность формироваться в дисперсионной среде стационарным волнам конеч­ной амплитуды - уединенным и периодическим. Уединенные волны для уравнения КдФ после работы стали называться солитонами . Периодические волны носят название кноидальных волн. Соот­ветствующие формулы для их описания даны в .

3.2. Постановка дифференциальной задачи.В работе иссле­дуется численное решение задачи Коши для уравнения Кортевега-де Фриза с периодическими условиями по пространству в прямоуголь­нике Q T ={( t , x ):0< t < T , x Î [0, l ].

u t + ии х + b и ххх = 0 (3.2)

u(x,t)| x=0 =u(x,t)| x=l (3.3)

с начальным условием

u(x,t)| t=0 =u 0 (x) (3.4)

4. Свойства уравнения Кортевега - де Фриза

4.1. Краткий обзор результатов по уравнению КдФ.Задача Коши для уравнения КдФ при различных предположениях отно­сительно u 0 (х) рассматривалась во многих работах . Задача о существовании и единственности решения с условиями периодично­сти в качестве краевых условий была решена в работе с помощью метода конечных разностей. Позже, при менее сильных предположе­ниях, существование и единственность были доказана в статье в пространстве L ¥ (0,T,H s (R 1)), где s>3/2, а в случае периодической задачи - в пространстве L ¥ (0,T,H ¥ (C))где С - окружность дли­ны, равной периоду, на русском языке эти результаты представлены в книге .

СОЛИТОН –это уединенная волна в средах различной физической природы, сохраняющая неизменной свою форму и скорость при распространении.От англ. solitary – уединенная (solitary wave – уединенная волна), «-он» – типичное окончание терминов такого рода (например, электрон, фотон, и т.д.), означающее подобие частицы.

Понятие солитон введено в 1965 американцами Норманом Забуски и Мартином Крускалом, но честь открытия солитона приписывают британскому инженеру Джону Скотту Расселу (1808–1882). В 1834 им впервые дано описание наблюдения солитона («большой уединенной волны»). В то время Рассел изучал пропускную способность канала Юнион близь Эдинбурга (Шотландия). Вот как сам автор открытия рассказывал о нем: «Я следил за движением баржи, которую быстро тянула по узкому каналу пара лошадей, когда баржа неожиданно остановилась; но масса воды, которую баржа привела в движение, не остановилась; вместо этого она собралась около носа судна в состоянии бешенного движения, затем неожиданно оставила его позади, катясь вперед с огромной скоростью и принимая форму большого одиночного возвышения, т.е. округлого, гладкого и четко выраженного водяного холма, который продолжал свой путь вдоль канала, нисколько не меняя своей формы и не снижая скорости. Я последовал за ним верхом, и когда я нагнал его, он по-прежнему катился вперед со скоростью приблизительно восемь или девять миль в час, сохранив свой первоначальный профиль возвышения длиной около тридцати футов и высотой от фута до фута с половиной. Его высота постепенно уменьшалась, и после одной или двух миль погони я потерял его в изгибах канала. Так в августе 1834 мне впервые довелось столкнуться с необычайным и красивым явлением, которое я назвал волной трансляции…».

Впоследствии Рассел экспериментальным путем, проведя ряд опытов, нашел зависимость скорости уединенной волны от ее высоты (максимальной высоты над уровнем свободной поверхности воды в канале).

Возможно, Рассел предвидел ту роль, которую играют солитоны в современной науке. В последние годы своей жизни он завершил книгу Волны трансляции в водном, воздушном и эфирном океанах , опубликованную посмертно в 1882. Эта книга содержит перепечатку Доклада о волнах – первое описание уединенной волны, и ряд догадок о строении материи. В частности, Рассел полагал, что звук есть уединенные волны (на самом деле это не так), иначе, по его мнению, распространение звука происходило бы с искажениями. Основываясь на этой гипотезе и используя найденную им зависимость скорости уединенной волны, Рассел нашел толщину атмосферы (5 миль). Более того, сделав предположение, что свет это тоже уединенные волны (что тоже не так), Рассел нашел и протяженность вселенной (5·10 17 миль).

По-видимому, в своих расчетах, относящихся к размерам вселенной, Рассел допустил ошибку. Тем не менее, результаты, полученные для атмосферы, оказались бы правильными, будь ее плотность равномерной. Расселовский же Доклад о волнах считается теперь примером ясности изложения научных результатов, ясности, до которой далеко многим сегодняшним ученым.

Реакция на научное сообщение Рассела наиболее авторитетных в то время английских механиков Джорджа Байделя Эйри (1801–1892) (профессора астрономии в Кембридже с 1828 по 1835, астронома королевского двора с 1835 по 1881) и Джорджа Габриэля Стокса (1819–1903) (профессора математики в Кембридже с 1849 по 1903) была отрицательной. Много лет спустя солитон был переоткрыт при совсем иных обстоятельствах. Интересно, что и воспроизвести наблюдение Рассела оказалось не просто. Участникам конференции «Солитон-82», съехавшимся в Эдинбург на конференцию, приуроченную к столетию со дня смерти Рассела и пытавшимся получить уединенную волну на том самом месте, где ее наблюдал Рассел, ничего увидеть не удалось, при всем их опыте и обширных знаниях о солитонах.

В 1871–1872 были опубликованы результаты французского ученого Жозефа Валентена Буссинеска (1842–1929), посвященных теоретическим исследованиям уединенных волн в каналах (подобных уединенной волне Рассела). Буссинеск получил уравнение:

Описывающее такие волны (u – смещение свободной поверхности воды в канале, d – глубина канала, c 0 – скорость волны, t – время, x – пространственная переменная, индекс соответствует дифференцированию по соответствующей переменной), и определил их форму (гиперболический секанс, см . рис. 1) и скорость.

Исследуемые волны Буссинеск называл вспучиваниями и рассмотрел вспучивания положительной и отрицательной высоты. Буссинеск обосновал устойчивость положительных вспучиваний тем, что их малые возмущения, возникнув, быстро затухают. В случае отрицательного вспучивания образование устойчивой формы волны невозможно, как и для длинного и положительного очень короткого вспучиваний. Несколько позже, в 1876, опубликовал результаты своих исследований англичанин лорд Рэлей.

Следующим важным этапом в развитии теории солитонов стала работа (1895) голландцев Дидерика Иоганна Кортевега (1848–1941) и его ученика Густава де Вриза (точные даты жизни не известны). По-видимому, ни Кортевег, ни де Вриз работ Буссинеска не читали. Ими было выведено уравнение для волн в достаточно широких каналах постоянного поперечного сечения, носящее ныне их имя – уравнение Кортевега-де Вриза (КдВ). Решение такого уравнения и описывает в свое время обнаруженную Расселом волну. Основные достижения этого исследования состояли в рассмотрении более простого уравнения, описывающего волны, бегущие в одном направлении, такие решения более наглядны. Из-за того, что в решение входит эллиптическая функция Якоби cn , эти решения были названы «кноидальными» волнами.

В нормальной форме уравнение КдВ для искомой функции и имеет вид:

Способность солитона сохранять при распространении свою форму неизменной объясняется тем, что поведение его определяется двумя действующими взаимно противоположно процессами. Во-первых, это, так называемое, нелинейное укручение (фронт волны достаточно большой амплитуды стремится опрокинуться на участках нарастания амплитуды, поскольку задние частицы, имеющие большую амплитуду, движутся быстрее впереди бегущих). Во-вторых, проявляется такой процесс как дисперсия (зависимость скорости волны от ее частоты, определяемая физическими и геометрическими свойствами среды; при дисперсии разные участки волны движутся с разными скоростями и волна расплывается). Таким образом, нелинейное укручение волны компенсируется ее расплыванием за счет дисперсии, что и обеспечивает сохранение формы такой волны при ее распространении.

Отсутствие вторичных волн при распространении солитона свидетельствует о том, что энергия волны не рассеивается по пространству, а сосредоточена в ограниченном пространстве (локализована). Локализация энергии есть отличительное качество частицы.

Еще одной удивительной особенностью солитонов (отмеченной еще Расселом) является их способность сохранять свои скорость и форму при прохождении друг через друга. Единственным напоминанием о состоявшемся взаимодействии являются постоянные смещения наблюдаемых солитонов от положений, которые они занимали бы, если бы не встретились. Есть мнение, что солитоны не проходят друг через друга, а отражаются подобно столкнувшимся упругим шарам. В этом также проявляется аналогия солитонов с частицами.

Долго считалось, что уединенные волны связаны только с волнами на воде и изучались они специалистами – гидродинамиками. В 1946 М.А.Лаврентьев (СССР), а в 1954 К.О.Фридрихс и Д.Г.Хайерс США опубликовали теоретические доказательства существования уединенных волн.

Современное развитие теории солитонов началось с 1955, когда была опубликована работа ученых из Лос Аламоса (США) – Энрико Ферми, Джона Пасты и Стена Улама, посвященная исследованию нелинейных дискретно нагруженных струн (такая модель использовалась для изучения теплопроводности твердых тел). Длинные волны, бегущие по таким струнам, оказались солитонами. Интересно, что методом исследования в этой работе стал численный эксперимент (расчеты на одной из первых созданных к этому времени ЭВМ).

Открытые теоретически первоначально для уравнений Буссинеска и КдВ, описывающих волны на мелкой воде, солитоны к настоящему времени найдены также как решения ряда уравнений в других областях механики и физики. Наиболее часто встречающимися являются (ниже во всех уравнениях u – искомые функции, коэффициенты при u – некоторые константы)

нелинейное уравнение Шредингера (НУШ)

Уравнение было получено при изучении оптической самофокусировки и расщепления оптических пучков. Это же уравнение применялось при исследовании волн на глубокой воде. Появилось обобщение НУШ для волновых процессов в плазме. Интересно применение НУШ в теории элементарных частиц.

Уравнение sin-Гордона (СГ)

описывающее, например, распространение резонансных ультракоротких оптических импульсов, дислокации в кристаллах, процессы в жидком гелии, волны зарядовой плотности в проводниках.

Солитонные решения имеют и так называемые, родственные КдВ уравнения. К таким уравнениям относятся,

модифицированное уравнение КдВ

уравнение Бенджамина, Бона и Магони (ББМ)

впервые появившееся при описании боры (волны на поверхности воды, возникающей при открывании ворот шлюзов, при «запирании» течения реки);

уравнение Бенджамина – Оно

полученное для волн внутри тонкого слоя неоднородной (стратифицированной) жидкости, расположенного внутри другой однородной жидкости. К уравнению Бенджамина – Оно приводит и исследованиее трансзвукового пограничного слоя.

К уравнениям с солитонными решениями относится и уравнение Борна – Инфельда

имеющее приложения в теории поля. Есть и другие уравнения с солитонными решениями.

Солитон, описываемый уравнением КдВ, однозначно характеризуется двумя параметрами: скоростью и положением максимума в фиксированный момент времени.

Солитон, описываемый уравнением Хироты

однозначно характеризуется четырьмя параметрами.

Начиная с 1960, на развитие теории солитонов повлиял ряд физических задач. Была предложена теория самоиндуцированной прозрачности и приведены экспериментальные результаты, ее подтверждающие.

В 1967 Крускалом и соавторами был найден метод получения точного решения уравнения КдВ – метод так называемой обратной задачи рассеяния. Суть метода обратной задачи рассеяния состоит в замене решаемого уравнения (например, уравнения КдВ) системой других, линейных уравнений, решение которых легко находится.

Этим же методом в 1971 советскими учеными В.Е.Захаровым и А.Б.Шабатом было решено НУШ.

Приложения солитонной теории в настоящее время находят применение при исследованиях линий передачи сигналов с нелинейными элементами (диоды, катушки сопротивления), пограничного слоя, атмосфер планет (Большое красное пятно Юпитера ), волн цунами, волновых процессов в плазме, в теории поля, физике твердого тела, теплофизике экстремальных состояний веществ, при изучении новых материалов (например, джозефсоновских контактов, состоящих из разделенных диэлектриком двух слоев сверхпроводящего металла), при создании моделей решеток кристаллов, в оптике, биологии и многих других. Высказано мнение, что бегущие по нервам импульсы – солитоны.

В настоящее время описаны разновидности солитонов и некоторые комбинаций из них, например:

антисолитон – солитон отрицательной амплитуды;

бризер (дублет) – пара солитон – антисолитон (рис. 2);

мультисолитон – несколько солитонов, движущихся как единое целое;

флюксон – квант магнитного потока, аналог солитона в распределенных джозефсоновских контактах;

кинк (монополь), от английского kink – перегиб.

Формально кинк можно ввести как решение уравнений КдВ, НУШ, СГ, описываемое гиперболическим тангенсом (рис. 3). Изменение знака решения типа «кинк» на противоположный дает «антикинк».

Кинки были обнаружены в 1962 англичанами Перрингом и Скирмом при численном (на ЭВМ) решении уравнения СГ. Таким образом, кинки были обнаружены раньше, чем появилось название солитон. Оказалось, что столкновение кинков не привело ни к их взаимному уничтожению, ни к последующему возникновению других волн: кинки, таким образом, проявили свойства солитонов, однако название кинк закрепилось за волнами такого рода.

Солитоны могут быть также двумерными и трехмерными. Изучение неодномерных солитонов осложнялось трудностями доказательства их устойчивости, однако в последнее время получены экспериментальные наблюдения неодномерных солитонов (например, подковообразные солитоны на пленке стекающей вязкой жидкости, изучавшиеся В.И.Петвиашвили и О.Ю.Цвелодубом). Двумерные солитонные решения имеет уравнение Кадомцева – Петвиашвили, используемое, например, для описания акустических (звуковых) волн:

Среди известных решений этого уравнения – нерасплывающиеся вихри или солитоны-вихри (вихревым является течение среды, при котором ее частицы имеют угловую скорость вращения относительно некоторой оси). Солитоны такого рода, найденные теоретически и смоделированные в лаборатории, могут самопроизвольно возникать в атмосферах планет. По своим свойствам и условиям существования солитон-вихрь подобен замечательной особенности атмосферы Юпитера – Большому Красному Пятну.

Солитоны являются существенно нелинейными образованиями и столь же фундаментальны, как линейные (слабые) волны (например, звук). Создание линейной теории, в значительной мере, трудами классиков Бернхарда Римана (1826–1866), Огюстена Коши (1789–1857), Жана Жозефа Фурье (1768–1830) позволило решить важные задачи, стоявшие перед естествознанием того времени. С помощью солитонов удается выяснить новые принципиальные вопросы при рассмотрении современных научных проблем.

Андрей Богданов

Помимо традиционно изучаемых типов волн можно привести примеры и других видов волн, которые занимают особое место при анализе процессов распространения колебаний в различных средах.

1. Ударная волна. Ударная волна (скачок уплотнения) - это распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в которой происходит резкое увеличение плотности, давления и скорости вещества. Она возникает при взрывах, детонации, при сверхзвуковых движениях тел, при мощных электрических разрядах и т.д. Например, при взрыве образуются продукты взрыва, обладающие большой плотностью и находящиеся под большим давлением. Расширяющиеся продукты взрыва сжимают окружающий воздух, причем в каждый момент времени сжатым оказывается лишь воздух, находящийся в определенном объеме, вне этого объема воздух остается в невозмущенном состоянии. С течением времени объем сжатого воздуха возрастает. Поверхность, которая отделяет сжатый воздух от невозмущенного воздуха, и представляет собой ударную волну (или как говорят, фронт ударной волны). На рис. 6.27,а в качестве примера приведен график распределения плотности в ударной волне, распространяющейся в реальном газе ( – плотность газа перед фронтом волны).

При ускоренном движении тела ударная волна возникает не сразу. Сначала возникает волна сжатия с непрерывными распределениями плотности и давления. С течением времени крутизна передней части волны возрастает и в некоторый момент времени происходит резкий скачок всех гидродинамических величин, возникает ударная волна.

В случае движения тела со сверхзвуковой скоростью (
) звуковые волны охватывают лишь часть объема газа, лежащую позади движущегося тела и ограниченную некоторой поверхностью, называемой характеристической поверхностью, поверхностью слабого разрыва или фронтом ударной волны.

При сверхзвуковом движении тела малых размеров со скоростью характеристическая поверхность (фронт волны) имеет вид круговой конической поверхности, вершина которой совпадает с движущемся телом О , а угол между образующими и траекторией тела удовлетворяет условию:
. Этот угол называют углом слабых возмущений или углом Маха (рис. 6.27,б).

В случае электромагнитных волн аналогом ударной звуковой волны, возникающей при движении тел со скоростями, превышающими фазовые скорости упругих волн в данной среде, является излучение Вавилова – Черенкова (см. §7.4.4).

2. Уединенная волна представляет собой волновое движение, которое в каждый момент времени локализовано в конечной области пространства и относительно медленно изменяет свою структуру при распространении.

Типичная, уединенная волна имеет вид одиночного импульса или перепада, но она может иметь и более сложную структуру. К уединенным волнам относят такие типы нелинейных волн, как уединенные волны в диссипативных средах, стационарные импульсные волны возбуждения в активных средах (нервные импульсы) и солитон в среде без потерь.

Солитон (от лат. solus – один) – структурно устойчивая уединенная волна в нелинейной диспергирующей среде. Структура солитона поддерживается стационарной за счет баланса между действием нелинейности среды и дисперсии.

Солитон впервые наблюдался на водяном канале в 1834 г., когда при резкой остановке баржи около ее носа образовался водяной выступ (водяной холм) и затем он стал самостоятельно распространяться по каналу, сохраняя на протяжении длительного времени свою структуру и скорость.

Рассмотрим возможность образования солитона на поверхности воды. Для волн, у которых длина волны значительно превышает глубину
водоема (
, мелкая вода) явление дисперсии отсутствует, они распространяются с фазовой скоростью
, где – ускорение свободного падения, а - смещение поверхности жидкости в вертикальном направлении в данной точке профиля волны (см. рис. 6.27,в). Из записанной формулы для фазовой скорости следует, что вершина водяного холма движется быстрее, чем точки вблизи его подножия. Это нелинейность среды приводит к тому, что крутизна фронта волны возрастает с течением времени, т.е. происходит пространственное сужение водяного холма (см. рис. 6.28,б).

Если же длина волны будет значительно меньше глубины
водоема (
), то в этом случае для волн малой амплитуды наблюдается сильная дисперсия , т.е. их фазовая скорость зависит от длины волны
. Это приводит к расплыванию водяного холма. Оказывается, что существуют волны с таким соотношением между и максимальным возвышением
, при котором наблюдается компенсация процессов расплывания холма из-за явления дисперсии и процессов его пространственного сужения. Такая компенсация и соответствует существованию солитона.

Солитоны ведут себя подобно частицам: при взаимодействии между собой или с некоторыми другими возмущениями, солитоны не разрушаются, а расходятся, вновь сохраняя свою структуру неизменной.

Солитоны играют важную роль в теории конденсированного состояния вещества, в частности в квантовой статистике, теории фазовых переходов. Структуры в форме солитонов обнаружены во многих динамических системах – в плазме, радиосхемах, лазерах, нервных волокнах.

Учебное издание

Марс Гильманович Валишев

Александр Александрович Повзнер

Доктор технических наук А. ГОЛУБЕВ.

Человеку даже без специального физического или технического образования несомненно знакомы слова "электрон, протон, нейтрон, фотон". А вот созвучное с ними слово "солитон" многие, вероятно, слышат впервые. Это и неудивительно: хотя то, что обозначается этим словом, известно более полутора столетий, надлежащее внимание солитонам стали уделять лишь с последней трети ХХ века. Солитонные явления оказались универсальными и обнаружились в математике, гидромеханике, акустике, радиофизике, астрофизике, биологии, океанографии, оптической технике. Что же это такое - солитон?

Картина И. К. Айвазовского "Девятый вал". Волны на воде распространяются подобно групповым солитонам, в середине которых, в интервале от седьмой до десятой, идет самая высокая волна.

Обычная линейная волна имеет форму правильной синусоиды (а).

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Так ведет себя нелинейная волна на поверхности воды при отсутствии дисперсии.

Так выглядит групповой солитон.

Ударная волна перед шаром, летящим в шесть раз быстрее звука. На слух она воспринимается как громкий хлопок.

Во всех вышеперечисленных областях есть одна общая черта: в них или в отдельных их разделах изучаются волновые процессы, а проще говоря - волны. В наиболее общем смысле волна - это распространение возмущения какой-либо физической величины, характеризующей вещество или поле. Это распространение обычно происходит в какой-то среде - воде, воздухе, твердых телах. И только электромагнитные волны могут распространяться в вакууме. Все, несомненно, видели, как от брошенного в воду камня, "возмутившего" спокойную поверхность воды, расходятся сферические волны. Это пример распространения "одиночного" возмущения. Очень часто возмущение представляет собой колебательный процесс (в частности, периодический) в самых различных формах - качание маятника, колебания струны музыкального инструмента, сжатие и расширение кварцевой пластинки под действием переменного тока, колебания в атомах и молекулах. Волны - распространяющиеся колебания - могут иметь различную природу: волны на воде, звуковые, электромагнитные (в том числе световые) волны. Различие физических механизмов, реализующих волновой процесс, влечет за собой различные способы его математического описания. Но волнам разного происхождения присущи и некоторые общие свойства, для описания которых используют универсальный математический аппарат. А это означает, что можно изучать волновые явления, отвлекаясь от их физической природы.

В теории волн так обычно и делают, рассматривая такие свойства волн, как интерференция, дифракция, дисперсия, рассеяние, отражение и преломление. Но при этом имеет место одно важное обстоятельство: такой единый подход правомерен при условии, что изучаемые волновые процессы различной природы линейны.О том, что под этим понимается, мы поговорим чуть позже, а сейчас лишь заметим, что линейными могут быть только волны с не слишком большой амплитудой. Если же амплитуда волны велика, она становится нелинейной, и это имеет прямое отношение к теме нашей статьи - солитонам.

Поскольку мы все время говорим о волнах, нетрудно догадаться, что солитоны - тоже что-то из области волн. Это действительно так: солитоном называют весьма необычное образование - "уединенную" волну (solitary wave). Механизм ее возникновения долгое время оставался загадкой для исследователей; казалось, что природа этого явления противоречит хорошо известным законам образования и распространения волн. Ясность появилась сравнительно недавно, и сейчас изучают солитоны в кристаллах, магнитных материалах, волоконных световодах, в атмосфере Земли и других планет, в галактиках и даже в живых организмах. Оказалось, что и цунами, и нервные импульсы, и дислокации в кристаллах (нарушения периодичности их решеток) - все это солитоны! Солитон поистине "многолик". Кстати, именно так и называется прекрасная научно-популярная книга А. Филиппова "Многоликий солитон". Ее мы рекомендуем читателю, не боящемуся довольно большого количества математических формул.

Чтобы понять основные идеи, связанные с солитонами, и при этом обойтись практически без математики, придется поговорить в первую очередь об упоминавшейся уже нелинейности и о дисперсии - явлениях, лежащих в основе механизма образования солитонов. Но сначала расскажем о том, как и когда был обнаружен солитон. Он впервые явился человеку в "обличии" уединенной волны на воде.

Это случилось в 1834 году. Джон Скотт Рассел, шотландский физик и талантливый инженер-изобретатель, получил предложение исследовать возможности навигации паровых судов по каналу, соединяющему Эдинбург и Глазго. В то время перевозки по каналу осуществлялись с помощью небольших барж, которые тащили лошади. Чтобы выяснить, как нужно переоборудовать баржи при замене конной тяги на паровую, Рассел начал вести наблюдения за баржами различной формы, движущимися с разными скоростями. И в ходе этих опытов он неожиданно столкнулся с совершенно необычным явлением. Вот как он описал его в своем "Докладе о волнах":

"Я следил за движением баржи, которую быстро тянула по узкому каналу пара лошадей, когда баржа неожиданно остановилась. Но масса воды, которую баржа привела в движение, собралась около носа судна в состоянии бешеного движения, затем неожиданно оставила его позади, катясь вперед с огромной скоростью и принимая форму большого одиночного возвышения - округлого, гладкого и четко выраженного водяного холма. Он продолжал свой путь вдоль канала, нисколько не меняя своей формы и не снижая скорости. Я последовал за ним верхом, и когда нагнал его, он по-прежнему катился вперед со скоростью примерно 8-9 миль в час, сохранив свой первоначальный профиль возвышения длиной около тридцати футов и высотой от фута до полутора футов. Его высота постепенно уменьшалась, и после одной или двух миль погони я потерял его в изгибах канала".

Рассел назвал обнаруженное им явление "уединенной волной трансляции". Однако его сообщение встретили скепсисом признанные авторитеты в области гидродинамики - Джордж Эйри и Джордж Стокс, полагавшие, что волны при движении на большие расстояния не могут сохранять свою форму. Для этого у них были все основания: они исходили из общепринятых в то время уравнений гидродинамики. Признание "уединенной" волны (которая была названа солитоном гораздо позже - в 1965 году) произошло еще при жизни Рассела трудами нескольких математиков, которые показали, что существовать она может, и, кроме того, были повторены и подтверждены опыты Рассела. Но споры вокруг солитона все же долго не прекращались - слишком велик был авторитет Эйри и Стокса.

Окончательную ясность в проблему внесли голландский ученый Дидерик Иоханнес Кортевег и его ученик Густав де Фриз. В 1895 году, через тринадцать лет после смерти Рассела, они нашли точное уравнение, волновые решения которого полностью описывают происходящие процессы. В первом приближении это можно пояснить следующим образом. Волны Кортевега - де Фриза имеют несинусоидальную форму и становятся синусоидальными только в том случае, когда их амплитуда очень мала. При увеличении длины волны они приобретают вид далеко разнесенных друг от друга горбов, а при очень большой длине волны остается один горбик, который и соответствует "уединенной" волне.

Уравнение Кортевега - де Фриза (так называемое КдФ-уравнение) сыграло очень большую роль в наши дни, когда физики поняли его универсальность и возможность приложения к волнам различной природы. Самое замечательное, что оно описывает нелинейные волны, и теперь следует более подробно остановиться на этом понятии.

В теории волн фундаментальное значение имеет волновое уравнение. Не приводя его здесь (для этого требуется знакомство с высшей математикой), отметим лишь, что искомая функция, описывающая волну, и связанные с ней величины содержатся в первой степени. Такие уравнения называются линейными. Волновое уравнение, как и любое другое, имеет решение, то есть математическое выражение, при подстановке которого обращается в тождество. Решением волнового уравнения служит линейная гармоническая (синусоидальная) волна. Подчеркнем еще раз, что термин "линейная" употребляется здесь не в геометрическом смысле (синусоида - не прямая линия), а в смысле использования первой степени величин в волновом уравнении.

Линейные волны подчиняются принципу суперпозиции (сложения). Это означает, что при наложении нескольких линейных волн форма результирующей волны определяется простым сложением исходных волн. Это происходит потому, что каждая волна распространяется в среде независимо от других, между ними нет ни обмена энергией, ни иного взаимодействия, они свободно проходят одна через другую. Иными словами, принцип суперпозиции означает независимость волн, и именно поэтому их можно складывать. При обычных условиях это справедливо для звуковых, световых и радиоволн, а также для волн, которые рассматриваются в квантовой теории. Но для волн в жидкости это не всегда верно: складывать можно лишь волны очень малой амплитуды. Если попытаться сложить волны Кортевега - де Фриза, то мы вообще не получим волну, которая может существовать: уравнения гидродинамики нелинейны.

Здесь важно подчеркнуть, что свойство линейности акустических и электромагнитных волн соблюдается, как было уже отмечено, при обычных условиях, под которыми подразумеваются, прежде всего, небольшие амплитуды волн. Но что значит - "небольшие амплитуды"? Амплитуда звуковых волн определяет громкость звука, световых - интенсивность света, а радиоволн - напряженность электромагнитного поля. Радиовещание, телевидение, телефонная связь, компьютеры, осветительные приборы и многие другие устройства работают в тех самых "обычных условиях", имея дело с разнообразными волнами малой амплитуды. Если же амплитуда резко увеличивается, волны теряют линейность и тогда возникают новые явления. В акустике давно известны ударные волны, распространяющиеся со сверхзвуковой скоростью. Примеры ударных волн - раскаты грома во время грозы, звуки выстрела и взрыва и даже хлопанье кнута: его кончик движется быстрее звука. Нелинейные световые волны получают с помощью мощных импульсных лазеров. Прохождение таких волн через различные среды меняет свойства самих сред; наблюдаются совершенно новые явления, составляющие предмет изучения нелинейной оптики. Например, возникает световая волна, длина которой в два раза меньше, а частота, соответственно, вдвое больше, чем у входящего света (происходит генерация второй гармоники). Если направить на нелинейный кристалл, скажем, мощный лазерный пучок с длиной волны l 1 = 1,06 мкм (инфракрасное излучение, невидимое глазом), то на выходе кристалла возникает кроме инфракрасного зеленый свет с длиной волны l 2 =0,53 мкм.

Если нелинейные звуковые и световые волны образуются только в особых условиях, то гидродинамика нелинейна по самой своей природе. А поскольку гидродинамика проявляет нелинейность уже в самых простых явлениях, почти столетие она развивалась в полной изоляции от "линейной" физики. Никому просто не приходило в голову искать что-либо похожее на "уединенную" волну Рассела в других волновых явлениях. И только когда были разработаны новые области физики - нелинейные акустика, радиофизика и оптика, - исследователи вспомнили о солитоне Рассела и задались вопросом: только ли в воде может наблюдаться подобное явление? Для этого надо было понять общий механизм образования солитона. Условие нелинейности оказалось необходимым, но недостаточным: от среды требовалось еще что-то, чтобы в ней смогла родиться "уединенная" волна. И в результате исследований стало ясно - недостающим условием оказалось наличие дисперсии среды.

Напомним кратко, что это такое. Дисперсией называется зависимость скорости распространения фазы волны (так называемой фазовой скорости) от частоты или, что то же самое, длины волны (см. "Наука и жизнь" № ). Несинусоидальную волну любой формы по известной теореме Фурье можно представить совокупностью простых синусоидальных составляющих с различными частотами (длинами волн), амплитудами и начальными фазами. Эти составляющие из-за дисперсии распространяются с различными фазовыми скоростями, что приводит к "размыванию" формы волны при ее распространении. Но солитон, который тоже можно представить как сумму указанных составляющих, как мы уже знаем, при движении свою форму сохраняет. Почему? Вспомним, что солитон - волна нелинейная. И вот тут-то и лежит ключ к раскрытию его "тайны". Оказывается, что солитон возникает тогда, когда эффект нелинейности, делающий "горб" солитона более крутым и стремящийся его опрокинуть, уравновешивается дисперсией, делающей его более пологим и стремящейся его размыть. То есть солитон возникает "на стыке" нелинейности и дисперсии, компенсирующих друг друга.

Поясним это на примере. Предположим, что на поверхности воды образовался горбик, который начал перемещаться. Посмотрим, что будет, если не учитывать дисперсию. Скорость нелинейной волны зависит от амплитуды (у линейных волн такой зависимости нет). Быстрее всех будет двигаться вершина горбика, и в некоторый следующий момент его передний фронт станет круче. Крутизна фронта увеличивается, и с течением времени произойдет "опрокидывание" волны. Подобное опрокидывание волн мы видим, наблюдая прибой на морском берегу. Теперь посмотрим, к чему приводит наличие дисперсии. Первоначальный горбик можно представить суммой синусоидальных составляющих с различными длинами волн. Длинноволновые составляющие бегут с большей скоростью, чем коротковолновые, и, следовательно, уменьшают крутизну переднего фронта, в значительной степени выравнивая его (см. "Наука и жизнь" № 8, 1992 г.). При определенной форме и скорости горбика может наступить полное восстановление первоначальной формы, и тогда образуется солитон.

Одно из удивительных свойств "уединенных" волн состоит в том, что они во многом подобны частицам. Так, при столкновении два солитона не проходят друг через друга, как обычные линейные волны, а как бы отталкиваются друг от друга подобно теннисным мячам.

На воде могут возникать солитоны и другого типа, названные групповыми, так как их форма весьма сходна с группами волн, которые в реальности наблюдаются вместо бесконечной синусоидальной волны и перемещаются с групповой скоростью. Групповой солитон весьма напоминает амплитудно-модулированные электромагнитные волны; его огибающая несинусоидальна, она описывается более сложной функцией - гиперболическим секансом. Скорость такого солитона не зависит от амплитуды, и этим он отличается от КдФ-солитонов. Под огибающей обычно находится не более 14-20 волн. Средняя - самая высокая - волна в группе оказывается, таким образом, в интервале от седьмой до десятой; отсюда известное выражение "девятый вал".

Рамки статьи не позволяют рассмотреть многие другие типы солитонов, например солитоны в твердых кристаллических телах - так называемые дислокации (они напоминают "дырки" в кристаллической решетке и тоже способны перемещаться), родственные им магнитные солитоны в ферромагнетиках (например, в железе), солитоноподобные нервные импульсы в живых организмах и многие другие. Ограничимся рассмотрением оптических солитонов, которые в последнее время привлекли внимание физиков возможностью их использования в весьма перспективных линиях оптической связи.

Оптический солитон - типичный групповой солитон. Его образование можно уяснить на примере одного из нелинейно-оптических эффектов - так называемой самоиндуцированной прозрачности. Этот эффект заключается в том, что среда, поглощающая свет небольшой интенсивности, то есть непрозрачная, внезапно становится прозрачной при прохождении сквозь нее мощного светового импульса. Чтобы понять, почему это происходит, вспомним, чем обусловлено поглощение света в веществе.

Световой квант, взаимодействуя с атомом, отдает ему энергию и переводит на более высокий энергетический уровень, то есть в возбужденное состояние. Фотон при этом исчезает - среда поглощает свет. После того как все атомы среды возбуждаются, поглощение световой энергии прекращается - среда становится прозрачной. Но такое состояние не может длиться долго: фотоны, летящие следом, заставляют атомы возвращаться в исходное состояние, испуская кванты той же частоты. Именно это и происходит, когда через такую среду направляется короткий световой импульс большой мощности соответствующей частоты. Передний фронт импульса перебрасывает атомы на верхний уровень, частично при этом поглощаясь и становясь слабее. Максимум импульса поглощается уже меньше, а задний фронт импульса стимулирует обратный переход с возбужденного уровня на основной. Атом излучает фотон, его энергия возвращается импульсу, который и проходит через среду. При этом форма импульса оказывается соответствующей групповому солитону.

Совсем недавно в одном из американских научных журналов появилась публикация о ведущихся известной фирмой "Белл" (Bell Laboratories, США, штат Нью-Джерси) разработках передачи сигналов на сверхбольшие расстояния по оптическим волоконным световодам с использованием оптических солитонов. При обычной передаче по оптико-волоконным линиям связи сигнал должен подвергаться усилению через каждые 80-100 километров (усилителем может служить сам световод при его накачке светом определенной длины волны). А через каждые 500-600 километров приходится устанавливать ретранслятор, преобразующий оптический сигнал в электрический с сохранением всех его параметров, а затем вновь в оптический для дальнейшей передачи. Без этих мер сигнал на расстоянии, превышающем 500 километров, искажается до неузнаваемости. Стоимость этого оборудования очень высока: передача одного терабита (10 12 бит) информации из Сан-Франциско в Нью-Йорк обходится в 200 миллионов долларов на каждую ретрансляционную станцию.

Использование оптических солитонов, сохраняющих свою форму при распространении, позволяет осуществить полностью оптическую передачу сигнала на расстояния до 5-6 тысяч километров. Однако на пути создания "солитонной линии" имеются существенные трудности, которые удалось преодолеть только в самое последнее время.

Возможность существования солитонов в оптическом волокне предсказал в 1972 году физик-теоретик Акира Хасегава, сотрудник фирмы "Белл". Но в то время еще не было световодов с низкими потерями в тех областях длин волн, где можно наблюдать солитоны.

Оптические солитоны могут распространяться только в световоде с небольшим, но конечным значением дисперсии. Однако оптического волокна, сохраняющего требуемое значение дисперсии во всей спектральной ширине многоканального передатчика, просто не существует. А это делает "обычные" солитоны непригодными для использования в сетях с длинными линиями передачи.

Подходящая солитонная технология создавалась в течение ряда лет под руководством Линна Молленауэра, ведущего специалиста Отдела оптических технологий все той же фирмы "Белл". В основу этой технологии легла разработка оптических волокон с управляемой дисперсией, позволившая создать солитоны, форма импульсов которых может поддерживаться неограниченно долго.

Метод управления состоит в следующем. Величина дисперсии по длине волоконного световода периодически изменяется между отрицательным и положительным значениями. В первой секции световода импульс расширяется и сдвигается в одном направлении. Во второй секции, имеющей дисперсию противоположного знака, происходят сжатие импульса и сдвиг в обратном направлении, в результате чего его форма восстанавливается. При дальнейшем движении импульс опять расширяется, затем входит в следующую зону, компенсирующую действие предыдущей зоны, и так далее - происходит циклический процесс расширений и сжатий. Импульс испытывает пульсацию по ширине с периодом, равным расстоянию между оптическими усилителями обычного световода - от 80 до 100 километров. В результате, по заявлению Молленауэра, сигнал при объеме информации более 1 терабита может пройти без ретрансляции по меньшей мере 5 - 6 тысяч километров со скоростью передачи 10 гигабит в секунду на канал без каких-либо искажений. Подобная технология сверхдальней связи по оптическим линиям уже близка к стадии реализации.

error: Content is protected !!