Изучаем механические колебания. Механические колебания (основная школа) От чего зависит механическое колебание


Механическими колебаниями называются движения, которые точно или приблизительно точно повторяются через определенные интервалы времени. тЦля колебаний характерно, что колеблющееся тело, например маятник, попеременно смещается то в одну, то в другую сторону. При вращении тела движение также периодически повторяется, но смещений в противоположные стороны относительно по-ложения равновесия не происходит. Колебательное и вращательное движения вызываются силами, которые, как правило, по-разному зависят от расстояний между телами.
§1.1. КЛАССИФИКАЦИЯ КОЛЕБАНИЙ
По характеру физических процессов в системе, которые вызывают колебательные движения, различают три основных вида колебаний: свободные, вынужденные и автоколебания.
Свободные колебания

Самым простым видом колебаний являются свободные ко-лебания. Свободные колебания возникают в системе под действием внутренних сил после того, как система выведена из положения равновесия. Такие колебания совершает груз, подвешенный на пружине іглс. 1.1), шарик на нити (маятник) (рис. 1.2) и др.
Эти системы обладают устойчивым положением равновесия, в котором действующие на тело силы взаимно уравнове-

шены. Сила тяжести F, действующая на шарик, уравновеше-

на или силой упругости растянутой пружины F0 (рис. 1.3),

или силой натяжения нити маятника FQ (рис. 1.4). При выведении системы из положения равновесия начинают действо-
Рис. 1.3
Рис. 1.4
О
вать силы, направленные к этому положению. В результате и возникают колебания.
Он
Рассмотрим подробнее, почему возникают колебания, например, шарика, подвешенного на пружине. Если сместить шарик вниз так, чтобы длина пружины уве-личилась на х (рис. 1.5), то на шарик начнет действовать дополнительная сила
F..
X
Рис. 1.5
упругости ґ , модуль которой пропорционален согласно закону Гука удлинению пружины. Эта сила направлена вверх, и под ее воздействием шарик с ускорением начнет двигаться вверх, постепенно увеличивая скорость. Сила при этом будет уменьшаться, так как пружина сокращает-ся. В момент, когда шарик достигнет положения равновесия, сумма всех сил, действующих на него, станет равной нулю. Следовательно, и ускорение шарика согласно второму закону Ньютона станет равным нулю.
Но к этому моменту скорость шарика уже достигнет некоторого значения. Поэтому, не останавливаясь в положении равновесия, он будет по инерции продолжать подниматься вверх. Пружина при этом сжимается, и в результате появляется сила, направленная уже вниз и тормозящая движение шарика (рис. 1.6). Эта сила, а значит, и направленное вниз ус-корение увеличиваются прямо пропорционально абсолютному значению смещения х шарика относительно положения равновесия. Скорость убывает до тех пор, пока в самой верхней точке не обратится в нуль. После этого шарик с ускорением
Ш
х
Of
начнет двигаться вниз. С уменьшением х модуль силы Fy убывает и в положении равновесия опять обращается в нуль. Но шарик уже успевает к этому моменту набрать скорость и продолжает двигаться вниз. Это движение приводит к дальнейшему растяжению пружины и к появлению силы, направленной вверх. Движение шарика тормозится до полной остановки в крайнем нижнем положении, после чего весь процесс повторяется сначала.
Если бы не существовало трения, то движение шарика не прекратилось бы никогда.
Рис. 1.6
Однако трение есть, причем сила трения как при движении шарика вверх, так и при движении вниз все время направлена против скорости. Она тормозит движение шарика, и поэтому размах его колебаний постепенно уменьшается до тех пор, пока движение не прекратится. При малом трении затухание становится заметным лишь после того, как шарик совершит много колебаний. И если интересоваться движением шарика на протяжении не очень большого интервала времени, то затуханием его колебаний можно пренебречь. В этом случае влияние силы трения на движение можно не учитывать.
Если же сила трения велика, то пренебречь ее действием и в течение малых интервалов времени нельзя. Опустите шарик на пружине в стакан с вязкой жидкостью, например с глицерином. Если пружина достаточно мягкая, то выведенный из положения равновесия шарик совсем не будет колебаться. Под действием силы упругости он просто вернется в положение равновесия, но выше уже подниматься не будет; за счет действия силы трения скорость его в положении равновесия будет практически равна нулю.
Теперь можно сообразить, что же является существенным для того, чтобы в системе могли возникнуть свободные колебания. Необходимо выполнение двух условий. Во-первых, при выведении тела из положения равновесия в системе должна возникать сила, направленная к положению равновесия, и следовательно, стремящаяся возвратить тело в положение равновесия. Именно так действует в рассмотренной нами системе сила упругости пружины и сила тяжести: и при перемещении шарика вверх, и при его перемещении вниз результирующая сила направлена к положению равновесия. Во-вторых, трение в системе должно быть достаточно мало, иначе колебания быстро затухнут или даже не возникнут. Незатухающие коле-бания возможны лишь при отсутствии трения.
Оба условия являются совершенно общими, справедливыми для любой системы, в которой могут возникнуть свободные колебания. Проверьте это самостоятельно на другой простой системе - маятнике. Нужно при этом иметь в виду, что шарик на нити будет представлять собой маятник лишь в том случае, если на него действует сила тяжести. Создающий эту силу земной шар входит в колебательную систему, которую для краткости мы называем просто маятником.
Вынужденные колебания
Колебания, совершаемые телами под действием внешних периодически изменяющихся сил, называются вынужденными.
Такие колебания будет, например, совершать книга на столе, если мы начнем двигать ее вперед и назад рукой. Колебания книги в данном случае вызваны действием силы со стороны руки, которая меняется по модулю и направлению. Вынужденными колебаниями являются также колебания поршней в цилиндрах двигателя внутреннего сгорания, иглы швейной машины и т. д. Особый интерес, как мы увидим в дальнейшем, представляют вынужденные колебания в системе, способной совершать свободные колебания.
Автоколебания
Наиболее сложным видом колебаний являются автоколебания. Автоколебаниями называются незатухающие ко-лебания, которые могут существовать в системе без воздействия на нее внешних периодических сил. Для этого система должна обладать собственным источником энергии. За счет энергии источника колебания не затухают, несмотря на действие сил трения. Наиболее известной автоколебательной системой являются часы с маятником или балансиром. Автоколебания мы рассмотрим в конце зїой главы.

Следует уделить время небольшому очерку, посвященному колебательному движению. Но прежде необходимо ответить на один важный вопрос. Что понимают под механическими колебаниями? Под ними подразумевают движение, во время которого наблюдаемое тело неоднократно занимает одни и те же положения в пространстве.

Физики различают непериодические и периодические колебания. К первым относят те из них, при которых координаты и другие характеристики тела не поддаются описанию с помощью периодических функций времени. Со вторым видом проще. Периодические колебания - это те, которые можно описать с помощью периодических функций времени. Но что под ними подразумевают? В физике также под колебаниями часто понимают процессы, в определённой степени повторяемые во времени. И отдельно относительно рассматриваемой темы следует сказать следующее. Механические колебания условно можно классифицировать таким образом:

  1. В зависимости от условий возникновения:
    1. Вынужденные;
    2. Автоколебания;
    3. Свободные.
  2. В зависимости от изменения кинетической энергии во времени:
    1. Гармонические;
    2. Пилообразные;
    3. Затухающие.

В статье будут рассмотрены не все, а только некоторые типы колебаний. Отдельно стоит сказать о формулах, их использовании и разнообразии. Если кратко, то их много. Разнообразие, в котором представлены механические колебания, формулы определения их параметров подтолкнули ученых к созданию отдельных справочников, рассчитанных на определённые ситуации. Придумывать самостоятельно, таким образом, ничего не надо. При создании колебательной системы необходимо будет всего потратить полчаса или час на то, чтобы найти формулу под конкретную ситуацию.

Характеристика механических колебаний

Для характеристики механических колебаний используются физические величины, которые позволяют получить необходимые данные. Амплитуда колебания - наибольшее отклонение тела, которое качается от начального значения положения. А что такое период? В нем колебания - это время, которое необходимо телу, чтобы повторить все свои движения, или другими словами, необходимое для совершения одного повторения движения. Что подразумевают под частотой? Под ней понимают число, равное количеству колебаний, совершенных за одну единицу времени. Зачастую в домашних, школьных и университетских опытах за частоту принимают одну секунду. Циклическая частота часто используется вместо понятия количества колебаний, произошедших за единицу времени, и подразумевает его подсчёт, необходимый на совершение одного такого цикла.

Гармонические механические колебания

Под гармоническими колебаниями подразумеваются те из них, физическая величина которых, выбранная для характеристики, изменяется на временном интервале в виде синусоидальной кривой, которую легко отобразить в графическом режиме. При изменении координаты материальной точки, согласно гармоническому закону, импульс, скорость и ускорение изменяются тоже по нему.

Свободные колебания

Когда колебание совершается в системе благодаря первоначальной энергии, то его называют свободным. В качестве практического отображения такого типа физического процесса используют специальные модели: пружинный и математический маятники. Они позволяют работать с самыми распространёнными ситуациями. В качестве математического маятника принимают точку, что колеблется и висит на нерастяжимой и невесомой нити. Такого устройства на земле нет. Поэтому ближе всего к теоретической модели находится конструкция, составленная из шара, диаметр (размер) которого значительно меньше, чем длина нити. Необходимо провести действия физического характера. Отклоните такой шар от своего начального положения и отпустите. И так любой экспериментатор сможет увидеть механические колебания. Период, а также их частота зависят исключительно от параметров системы: длины нити математического маятника, жесткости пружины, массы груза (важно для пружинного маятника). Именно из-за этого свободные колебания ещё называют собственными колебаниями системы. Вполне логично. А частоту, с которой всё происходит, называют системной.

Превращение энергии при механических колебаниях

Потенциальная и кинетическая энергии при движениях тела переходят одна в другую. И то же самое - наоборот. Когда система отклоняется от начального положения равновесия на наибольшее возможное значение, то потенциальная энергия тоже достигает своего максимального значения, тогда как кинетика тела - минимального. Отдельно следует сказать об одном заблуждении, популярном среди людей. Когда достигается положение равновесия, то потенциальная энергия находится в точке своего минимума (обычно считают, что здесь она равняется нулю), тогда как кинетика (а это и импульс тела, и скорость его движения) достигает максимума. На практике учитывается ещё кое-что. В реальных системах присутствуют не потенциальные силы, значение которых не равняется нулю. Энергия системы растрачивается за счёт работы сил опоры, трения воздуха, внутренних сил пружины или подвеса. Постепенно уменьшается амплитуда колебания тела. Такие колебания и называются затухающими. Если сила трения слишком велика, то весь запас энергии может быть израсходован уже за период одного колебания, и движение тела не будет периодическим.

Вынужденные колебания

Под вынужденными колебаниями понимают те из них, которые происходят под влиянием внешней силы, совершающей работу, что меняется во времени. Есть и другая формулировка. Благодаря внешнему притоку энергии, она в самой системе поддерживается на достаточном уровне, чтобы происходили собственно колебания. Чтобы понять это, необходимо провести параллели с реальностью. Примером предмета, совершающего такого вида колебания, являются качели, на которых сидит один человек, а второй его раскачивает. Есть один нюанс. Если внешняя сила компенсирует потерю энергии в системе непрерывно или периодически, без прекращения самого процесса колебаний, то их называют незатухающими вынужденными.

О диапазоне можно отметить следующее. Амплитуда вынужденных колебаний полностью определена силой, которая действует извне, а также соотношением между собственными частотами принимающих участие в процессе сторон. И тут имеет место одно интересное явление. При вынужденных колебаниях периодически можно наблюдать резкое возрастание амплитуды, которое называется резонансом.

Резонанс

Он возникает в тех случаях, когда сила, что влияет на систему, становится очень близкой к её частоте колебаний. Возможен и другой вариант. В том случае, если частота влияющей силы кратна колебаниям самой системы, на которую она воздействует, тоже возникает резонанс. Как он графически изображается? Зависимость амплитуд колебания системы от частоты влияющей силы выражают с помощью резонансной кривой.

Автоколебания

Свое применение автоколебания нашли в технике. Они существуют там, где незатухающие колебания поддерживаются благодаря энергии источника, который может автоматически включать и выключать сама система. В таких случаях можно всерьез рассматривать вопрос присвоения системе статуса автоколебательной. Почему? Тот момент, когда нужно подавать энергию для колебания, отслеживает подсистема, отвечающая за обратную связь. В зависимости от параметров тела, она может оказывать влияние сильно и сразу, или понемногу и постепенно. Она может открывать или закрывать возможность для поступления энергии в общую систему. Это её главное задание. В качестве примера автоколебательной системы можно вспомнить маятниковые часы, где источник энергии - это гиря, а анкерный механизм успешно справляется с ролью подсистемы обратной связи, регулирующей подачу кинетики, от которой зависят механические колебания.

Параметрические колебания

Под этим видом колебаний определяются те из них, которые происходят в системах, что периодически изменяют свои параметры. Что можно о них сказать? Единственное, чем определяются амплитуда и сила колебательной системы, - это её параметры.

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A - это наибольшее смещение из положения равновесия

Период T - это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний - это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными . Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические , затухающие , нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Вынужденные колебания

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом .

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.


Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор - это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других - вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 - разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

Колебания – это движения или процессы, которые точно или приблизительно повторяются через определенные интервалы времени.

Механические колебания- колебания механических величин (смещения, скорости, ускорения, давления и т.п.).

Механические колебания (в зависимости от характера сил) бывают:

свободные;

вынужденные;

автоколебания.

Свободными называют колебания, возникающие при однократном воздействии внешней силы (первоначальном сообщении энергии) и при отсутствии внешних воздействий на колебательную систему.

Свободные (или собственные) - это колебания в системе под действием внутренних сил, после того как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие).

Условия возникновения свободных колебаний

1. Колебательная система должна иметь положение устойчивого равновесия.

2. При выведении системы из положения равновесия должна возникать равнодействующая сила, возвращающая систему в исходное положение

3. Силы трения (сопротивления) очень малы.

Вынужденные колебания - колебания, происходящие под воздействием внешних сил, меняющихся во времени.

Автоколебания - незатухающие колебания в системе, поддерживаемые внутренними источниками энергии при отсутствии внешней переменной силы.

Частота и амплитуда автоколебаний определяется свойствами самой колебательной системы.

От свободных колебаний автоколебания отличаются независимостью амплитуды от времени и от начального воздействия, возбуждающего процесc колебаний.

Автоколебательная система состоит из: колебательной системы; источника энергии; устройства обратной связи, регулирующее поступление энергии из внутреннего источника энергии в колебательную систему.

Энергия, поступающая из источника за период, равна энергии, потерянной колебательной системой за то же время.

Механические колебания делятся на:

затухающие;

незатухающие.

Затухающие колебания - колебания, энергия которых уменьшается с течением времени.

Характеристики колебательного движения:

постоянные:

амплитуда (А)

период (Т)

частота ()

Наибольшее (по модулю) отклонение колеблющегося тела от положения равновесия называется амплитудой колебаний. Обычно амплитуду обозначают буквой А.

Промежуток времени, в течение которого тело совершает одно полное колебание, называется периодом колебаний.

Период колебаний обычно обозначается буквой Т и в СИ измеряется в секундах (с).

Число колебаний в единицу времени называется частотой колебаний .

Обозначается частота буквой v (“ню”). За единицу частоты принято одно колебание в секунду. Эта единица в честь немецкого ученого Генриха Герца названа герцем (Гц).


период колебания Т и частота колебаний v связаны следующей зависимостью:

Т=1/ или =1/Т.

Циклическая (круговая) частота ω – число колебаний за 2π секунд

Гармонические колебания - механические колебания, которые происходят под действием силы, пропорциональной смещению и направленной противоположно ему. Гармонические колебания совершаются по закону синуса или косинуса.

Пусть материальная точка совершает гармонические колебания.

Уравнение гармонических колебаний имеет вид :

а – ускорение V- скорость q – заряд А – амплитуда t -время

– это движения или процессы, которые характеризуются определенной повторяемостью во времени.

Период колебаний T – интервал времени, в течение которого происходит одно полное колебание.

Частота колебаний ν – число полных колебаний в единицу времени. В системе СИ выражается в герцах (Гц).

Период и частота колебаний связаны соотношением:

Гармонические колебания – это колебания, при которых колеблющаяся величина, например смещение груза на пружине от положения равновесия, изменяется по закону синуса или косинуса:

где x 0 – амплитуда, ω – циклическая частота, φ 0 – начальная фаза колебания.

Ускорение при гармонических колебаниях всегда направлено в сторону, противоположную смещению; максимальное ускорение равно по модулю


В качестве примеров свободных колебаний можно привести пружинный и математический маятники. Пружинный (гармонический ) маятник – груз массы m , прикрепленный к пружине жесткости k , второй конец которой закреплен неподвижно. Циклическая частота колебаний груза равна:

а период: а период колебаний:

Автоколебания – это незатухающие свободные колебания, поддерживаемые за счет периодической подкачки энергии от какого-либо источника внешней силы. Примером автоколебательной системы могут служить механические часы.

error: Content is protected !!